Analytics and the ‘Internet of Things’

gareth-noyesAnalytics has become a major buzzword these days, whether in the realm of connected devices, the Internet of Things, web analytics or big data business analytics. In the context of the Internet of Things, I thought I’d share some observations on different analytics paradigms and use cases.

By Gareth Noyes – Chief Strategy Officer, Wind River

One common analytics model is what could be termed “store-and-analyze-later,” where massive amounts of data are streamed up to cloud servers and Hadoop clusters for later analysis. The problem with this approach, especially given the ever increasing amounts of data, is that it doesn’t scale, the amount of data quickly overwhelms our ability to make sense of it. Compare that to a model where intelligence (gained from analytics) is tailored to the use case and system topology, leading to “intelligence where and when you need it”– the notion of multi-tiered intelligence where edge devices have a configurable amount of autonomy and decision making authority, and no longer act as “dumb data generators.”

Clearly the right architecture is largely driven by the use case being addressed, and context matters. Take for example a predictive modeling scenario, where complex machine learning algorithms on powerful servers crunch through huge amounts of collected operational data to build a predictive failure model, for example, of a wind turbine. Once the model is generated “in the cloud” it can be exported to the turbine control system for more autonomous execution and refinement.

More and more startups appear in the analytics space, from real-time in-memory databases to full analytics platforms. One area of particular interest is around streaming analytics engines, quite opposite to the store-and-analyze-later scenario described earlier. Data is being processed and analyzed “on the fly.” This technology generally scales better to a multi-tiered analytics use case.

Yet another perspective of analytics, and one that’s becoming increasingly important for the Internet of Things, is what I would term one-way vs. closed-loop analytics. One-way analytics is effectively up streaming of data to the cloud for storage and visualization, largely requiring humans to make intelligent interpretations. Where it gets really interesting, is the closed-loop use case, where analytics either in the cloud or in aggregation points in the network, drive changes and control back to the edge device, or devices exchange analytics intelligence between each other. Regardless of the type of analytics paradigm or use case, the one constant is that data and the ability to make sense of it, is becoming a critical differentiator for the Internet of Things.

Gareth Noyes is responsible for Wind River corporate strategy and mergers and acquisitions (M&A) activities as well as for leading the chief technology office. In this capacity, he has led all acquisitions for Wind River since 2005, including the acquisition of Wind River by Intel® in 2009. Since then, he has also worked closely with M&A colleagues at Intel and Intel Capital on joint deals and investments. He joined the company in January 1999 and has held roles in various areas, including engineering, product management, business development, and strategic alliances. Prior to joining Wind River, he was a research scientist working at various European laboratories and universities, where he developed expertise in complex embedded control and data acquisition systems. He holds a Ph.D. in high-energy particle physics from the University of Birmingham (UK) and a B.Sc. in physics from Royal Holloway at the University of London.

© 2015 Strategies Telecoms & Multimedia | Contact |  -